科学与文明 -05-古籍收藏 -06-史藏 -13-经世文编

4-皇朝经世文新编-清-麦仲华*导航地图-第691页|进入论坛留言



正在加载语音引擎...

 法以周径相乘四除之得平圆面积
七题 句股弦面幂相等之理
 凡句之平方与股之平方相并必等于弦之平方
八题 求正立方形及带纵立方形之体积
 法以长与相乘又以高乘之即得立方形体积
九题 求堑堵阳马臑之积
 堑堵之积居立方二分之一 阳马之积居立方三分之一 臑之积居立方六分之一
十题 求高台之积
 法以上长倍之加下长以上广乘之又倍下长加上长以下广乘之两数相并又以高乘之以六除之得其台积
以上十题仅择算书中最要者略举数端耳读者触类旁通可也
  论观书之法                  华蘅芳
学者既通九章又能明几何中条段之理则宜涉猎各种算学之书
如观秦道古数书九章则知有求一之术观梅氏丛书及数理精蕴则知有弧三角对数之术观罗氏观我生室或丁氏白芙堂丛书则知有天元四元之术观代数学及代数术则知天元之外更有代数之术观代微积拾级及微积溯源则知代数之外更有微分积分之术
凡此诸术皆为今世之所有而其理其法则为从古及今明算之人阐发数理之奥赜而成然数理渊深不可限量其中妙义任人探索终无穷尽之时不可谓此理之外更无他理此法之外更无他法也
余非谓甫通九章几何之人即能观以上所言之各书而尽解之也惟恐人囿于条段之理则心思不能超脱故欲以元代诸书广其眼界耳
学问之道贵乎温故知新而算学之事则宜去故生新不将已知已能之事撇开一边则其先入之见胶固积滞于胸中足以蒙蔽心思而新义不得复入矣譬如饮食过饱则致不易消化必待其消归乌有而后能再食他物否则珍羞罗列满前亦无下箸之处也
凡观算学之书其浅近之处过目即解本无待于研究至于深文奥义以及数理之繁赜者则非一时所能通惟遇难通之处亦不必极力思索但将其所言之事置之心中勿助勿忘阅数月自能通晓
尝见有初学算法之人年少气盛日夜究心算学遇有难通之处积思致废寝食虽其所得通者可速于他人而卒至用心过度遽促天年著作未成九原遗恨良可慨已
夫算学不过为六艺中之一艺耳则究心此学者不必以生平之全力赴之祗须于正务之暇当作游艺之事斯可矣昔之人以着棋为消闲之事今之人以牌为消闲之事观算学书亦是消闲之事也人若能以着棋牌之工夫用之于观书而即以着棋牌时所用之心思以究夫算学之理则未有不成一代畴人者也
凡观算学之书遇有不明之处不妨放过此处而再看下文且不妨抛去此书而另观他书因上文所未详者或于下文解之也此书之所忽略者或为彼书之所赅备也若观各书皆不能明而心中窒塞烦闷则宜屏弃学算之事少或数月多至经年必自能忆及各书而取观之此时之光景宛如良朋密友久别重逢其相得之情有非笔墨所能罄者也
有一种算学之书但有各种算术而不言其立术之理则观此书者不必自思其理久后必能从别种算学中自得其理
数理繁赜之处其变化之法书中未必将其曲折之故一一明言则观者亦不必极力思索但从其以上各法细观之必已有式在前也
凡观算学之书不必记其句语亦不必记其算式只须明其大意而已已明其理即可置之未明其理亦姑且置之因今日不明可俟异日明之也他种学问皆忌作辍而算学则不忌作辍且其进境即在于作辍之中此非身历其境者不知也
事物之理自其外而观之则能见其全体自其内而观之则能见其底蕴惟以我观物不可反为物所役也若入乎其中而不能出乎其外则如入牛角之中而不得出矣观书者亦不可反为书所役也九容之术原书已不胜其繁又从而抽绎其义引伸其说名目愈多头绪百出试思此种算学究竟有何用处
凡观算书有数个最快意之境界既习九章之术而得几何点线面体之理以印证之一快也初通天元之术知一切算题皆为我法所能驭二快也舍天元而习代数知天元所不能为之事皆为代数所能为三快也
凡观算书有数处最难于进步然不过此关则终身不能再有进境矣如已习几何之人不肯舍其条段之理而习天元此乃先入之见误之也已习天元四元之人又不肯舍其剔分易位之事而习代数此乃中西之见误之也善学算者不存先入之见亦不存中西之见故其学无止境亦无限量
  论学算之法                  华蘅芳
算学中门径甚多歧途百出非备尝此中之艰苦者不能洞悉其曲折所以学算亦不可无法也
学算之人其志向各有不同故其所学之事遂亦从此分焉综而计之大约可分为两类一为阐明数理以成著作一为推演各数施之实用