大小两分相并得七七二八奇为第四合名第五第六同
相减余五一八奇为第四断第五第六同
设有比例八二四六奇与大分有等 以乘矩形之长得二十五二四奇其边五0二三奇以乘矩形之阔得八七四九奇其边二九五七奇 两数相并得七九八奇为太自之得六三七二奇即第四合名乘比例之矩形 两数相减得二0六六为少自之得四二六八奇即第四断乘比例之矩形
设有比例七二一奇与小分有等 以乘矩形之长得二十二0七其边四六九七奇以乘矩形之阔得七六五其边二七六五奇两数相并得七四六二奇为比中方自之得五五七一奇即第五合名乘比例之矩形 两数相减得一九三二奇为合比中方自之得三七三二奇即第五断乘比例之矩形
设有比例七与大分小分皆无等 以乘矩形之长得二十一四二七其边二七二三奇 两数相并得七三五一奇为两中面之自之得五四0九奇即第六合名乘比例之矩形 两数相减得一九0五奇为合中中方自之得三六二九奇即第六断乘比例之矩形大分十五正方二百二十五小分十一一八奇正方一百二十五两正方较积一百其边十与大分有等 大小两分相减余三八二奇为第一断 即以较积方边为比例圆半径以乘第一断得三十八二奇开得断六一八奇即圆内容十边形之一边
大分十二五正方一百五十六二五小分五五九奇正方三十一二五两正方较积一百二十五其边十一一八与大分无等 大小两分相减余六九一奇为第四断 有比例二十圆径与大分有等以乘第四断得一百三十八奇开得少十一七五奇即圆内容五边形之一边
大分十七三二奇正方三百小分十二九一奇正方一百六十六六六两正方较积一百三十三三三其边十一五四奇与大分有等 大小两分相减余四四一奇为第一断 即以较积方边为比例球内容六面体之一边以乘第一断得五十0八九奇开得断七一三奇即球内容十二面体之一边
大分十一一八奇正方一百二十五小分五正方二十五两正方较积一百其边十与大分无等 大小两分相减余六一八奇为第四断 有比例十七八八奇容二十面体上五边形之圆径与大分有等以乘第四断得一百十0四九奇开得少十0五一奇即球内容二十面体之一边
圆锥三曲记
顾观光
凡圆锥体横剖之成平圆斜剖之成椭圆平圆祗有一心其周之距心恒等椭圆则有二心自二心出抵圆周二之和必与长径等也命椭圆之长径为横轴短径为纵轴则任于圆周作纵为股所截长半径之横为句股羃乘长半径羃与句羃乘短半径羃之和恒与两半径羃相乘之数等其过心之倍股即长轴之通径以长径为连比例之首率短径为中率则通径为末率也股羃与所分长径二分相乘之羃若短径羃与长径羃于长径上作平圆则同句之平圆股若长径与短径矣任于圆周出二斜抵横轴之两端为正余二通弦则二通弦对角正切相乘之羃即长径羃约短径羃之数自圆周作二斜与二通弦平行则椭圆切也
引横轴与切相交成句股形切为弦纵为股则其句为次切法以横羃与长半径羃相减为实横为法实如法而一即次切也自切点作抵横轴与切成直角是名法法为弦纵为股则其句为次法法以短半径羃乘横为实长半径羃为法实如法而一即次法也椭圆法平分切点距二心之交角故切与距二心之交角亦相等矣二切既与二通弦平行则自二属点过中点之斜径亦与二通弦平行命之曰相切径任于圆周作纵与一半径平行截其又一半径为横与横轴上之句股比例并同故相属径之二羃和与长短径之二羃和恒相等也
径端距二心相乘之羃与半径羃等相属径四端之四切成平行四边形亦与长短二径相乘之羃等若以二径之平圆面积为首末率而求其中率即椭圆面积也
凡圆锥体依一边之势自对边斜剖之至底成单曲形以此形横置之作过心横轴引长至顶点外如顶点距心度乃作垂与轴成直角即准也任于曲上作横直交于准必与距心等任于曲上作纵为股截轴之横为句以句为连比例之首率股为中率则通径为末率通径者过心之倍股也折取其半即心距准之度矣自纵上端作斜为曲之切引横轴与之相交亦与次切成句股形又作法直交于切亦与次法成句股形单曲之次切倍于横而次法恒为通径之半以纵约次法或以次切约纵皆切与轴交角之正切也
切点距心交法之角恒等于法交轴之角故法之两端其距心亦相等切点距心交切之角恒等于切交轴之角故切之两端其距心亦相等自心作斜直交于切即切点顶点两距心之中率矣任作通弦与切平行又自切点作横径与轴平行必分通弦为两平分半通弦为纵截横径为横与横轴上之句股比例并同若句股相乘取三之二即所截单曲之面积也
凡圆锥体依立垂之势自一边直剖之至底成
左旋