右先为八方,讫东西正中加一昼,各中通,以成十方。诸方各置四十五度,其东西二分头加一中昼,便是各半其方,即东西各四半方也。各置二十二度三十分,言触从北亏者,是从中道北入也;言从南亏者,是从中道南入也者。
度四十五西度四十五
南度四十五度四十五北
度四十五东度四十五
度二十分州
度二十分州
若从东北隅入,月蚀即从东中道北行,以蚀行减方数尽,则蚀初之分。(南入法准此)若从西北隅入,日蚀即从西中道北行,以蚀行减方数尽,即蚀初之分。(南入法准此)
推日量法:术曰:置日行分,(谓日减术先所标五十七等数)以六十乘之,以十一除之,得度,余以六十乘之,依前除,得分,置为日量法。
推日蚀法:(凡云日蚀,太白从月,星伐阿修星;又并日月二为半位,其所用间量之,并以日间为之,日蚀术算,亦同月蚀也。)术曰:置节断刻位,通作分,谓六十乘刻内分也,别置之,为刻分位。
推日上星驷法:术曰:置定日,以半夜刻及全昼刻并之,并讫,所行刻以减定日分行,减讫,置为日蚀出位。又别置三十度,以日出位度及分减分,(其减分法,退一度,破为六十分而减之。)减余,通作分,置为上虚驷。
段法:第一段,(一百九十八)第二段,(二百三十二)第三段,(二百九十)第四段,(三百五十一)第五段,(二百六十)第六段,(三百五十八)右六段,从上向下,为羖首次;从下向上,为秤首;及置上虚驷,恒视日出相,得羖首、秤首次第;(假令日出相定,即得羖首也,谓即须用羖首第一段乘也,他皆仿此。)其段乘之,以一千八百除之,所得者,谓所得数也。以减刻分位,成减为一相,即以一相加日出相位。
(日出位中度及分并弃之)即以次段减段,令用羖首第段弃上虚驷讫,即第刻分位乘三十,段二百三十二减之,又以一相准前加日出相位,又以其次段减刻分位,成减,又以一相加日出相位,视刻分位数,堪更减之,他皆仿此。至不成减止,余刻分位不成减,云余也。以三十乘,以所至段除,能止,从羖首加三相于星相位讫,即取决四段除之,他皆仿此。得此度不尽,以六十乘,依前除,得分,以所得度及分,并加日出位,加讫,即是节断。
恒减三相,减讫,(羖首为北行,秤首为南行。)日间如是量府三相已上,准减相例为如之,为其相定及三相已下,总通作分,谓三十乘内度,六十乘度也。一如前推月间量命法为之,置为月间量命,以一百四十六数除之,所得为度,余以六十乘之,依前除之,所得为分,置为位。恒观月间量府,若羖首减,谓随方眼法。随方眼法:(其随方眼,中国用三十五分也。
)若秤首以加随方眼法之置以位,为中命,置中命又一如前命法为之,置为后命,月域乘之,以五万一千五百六除之,所得为度,余以六十乘之,依前除之,所得分。所得度及分,恒视间量府,(谓均分,减阿修讫,间量府也。)得羖首减之,(亦为均分,减阿修讫,间量府也。)得秤首加之,(亦谓如均分,间量府也。)减阿修讫,置为日间量;(如十一度已下,有蚀;十一度已上,无蚀。
)又并日月二量为全位,复半之,为半位,置半位自相至,又置日间量,亦自相乘讫,即以半位数内减却日成数,成减有蚀,不成减无蚀,余并一如蚀中叙。(凡在历大侧,如其分不足减,退度一,置为六十分而减之;如其度不足,退相一,置为三十度而减之;如其相不足减,加十二相而减之。)置上虚驷,恒日出相,依羖首、秤首次第,(假令日出相定,即得羖首也,谓即用羖首第二段乘也,他皆仿此。
)以其段乘之,以一千八百除之,所得者,(谓所除得数也)以减刻分位,成减,为一相,即以一相加日出相位,(其日出位所有度及分并弃之)又即以次段减刻分位,(假令用羖首第一段乘上虚驷讫,即用以第二段二百三十二减之,他皆仿此。

