而辨订古今之长短。如旧传方程分二色为一法,三色为一法,四色、五色以上为一法,头绪纷然。所立假如仅可施之本例,而不可移之他处。至於正负加减法,实并分母诸例,率皆谬误。今则约之为和数、较数、和较兼用、和较加变四例,而和数不分正负,较数任以一色为正,即以相当之一色为负,皆以异名相并,同名相减,实足正旧法之讹误。又割圆术古以径一围三为周径之率,宋祖冲之用圆容六边起算,元赵友钦用圆容四边起算,皆屡求勾股,得径一者周三一四一五九六二五。
泰西法亦同其率。古今周率之密,无逾於此。而旧所传弧矢诸术,周径皆用古率,又弧弦弦背互求诸术,立法极为疏舛。今则以六宗三要二简法求得一象限内弦矢割切正馀八线,立为一表,洵极勾股弧矢之变。又《几何原本》止於测面,七卷以下,徐光启、李之藻后无译之者。
《新法算书》,往往有杂引之处,读者未之能详。且理分中末线,但有求作之法,而莫知所用。今则求得各等面体及求内容外切各等面体之积,至十二等面及二十等面之体,皆以理分中末线为之比例,足以补测量全义量体诸率之简略。至末部借根方法,即古立天元一之术,唐宋诸算家咸用之。至明而失传,是以顾应祥、唐顺之於元李冶《测圆海镜》一书所立天元一皆茫然不解。今则具明其加减乘除之例,而后根与平方以下诸乘方之多少者咸得其开法,与古所云带纵立方三乘方诸变同归一揆。
且线面体一以贯之,而本法所不能求者,皆可以借根而得,至为精妙。他若对数表以假数、求真数,比例规解以量代算,皆西法之迥异於中法者,咸为疏通证明,绘图立表,粲然毕备。实为从古未有之书。虽专门名家,未能窥高深於万一也。
△《几何论约》七卷(内府藏本)
国朝杜知耕撰。知耕字临甫,号伯瞿,柘城人。是书取利玛窦与徐光启所译《几何原本》复加删削,故名《论约》。光启於《几何原本》之首,冠杂议数条,有云此书有四不必;不必疑,不必揣,不必试,不必改。有四不可得;欲脱之不可得,欲驳之不可得,欲减之不可得,欲前后更置之不可得。知耕乃刊削其文,似乎蹈光启之所戒。然读古人书往往各有所会心,当其独契,不必喻诸人人,并不必印诸著书之人。《几何原本》十五卷,光启取其六卷。欧几里得以绝世之艺,传其国递授之秘法,其果有九卷之冗赘,待光启去取乎?
各取其所欲取而已。知耕之取所欲取,不足异也。梅文鼎算数造微,而所著《几何摘要》亦有所去取於其间,且称知耕是书足以相证。则是书之删繁举要,必非漫然矣。
△《数学钥》六卷(内府藏本)
国朝杜知耕撰。其书列古方田、粟米、衰分、少广、商功、均输、盈朒、方程、勾股九章,仍取今线、面、体三部之法隶之,载其图解,并摘其要语以为之注,与方中通所撰《数度衍》用今法以合《九章》者体例相同。而每章设例,必标其凡於章首。每问答有所旁通者,必附其术於条下。所引证之文,必著其所出,蒐辑尤详。梅文鼎《勿菴历算书》记曰:近代作者如李长茂之《算海详说》,亦有发明,然不能具《九章》。惟方位伯《数度衍》,於《九章》之外蒐罗甚富。
杜端伯《数学钥》,图注《九章》,颇中肯綮,可为算家程式。其说固不诬矣。世有二本,其一为妄人窜乱,殊失本真。此本犹当日初刊。今据以校正,以复知耕之旧云。△《数度衍》二十四卷、附录一卷(两江总督采进本)国朝方中通撰。中通字位伯,桐城人。明检讨以智之子也。以智博极群书,兼通算数。中通承其家学,著为是书,有数原律衍、几何约、珠算、笔算、筹算、尺算诸法。复条列古《九章》名目,引《御制数理精蕴》,推阐其义。其《几何约》,本前明徐光启译本。
其珠算,仿程大位《算法统宗》。笔算、筹算、尺算采《同文算指》及《新法算书》。惟数原律衍未明所自,大抵裒辑诸家之长,而增减润色,勒为一编者也。其尺算之术,梅文鼎谓其三尺交加取数,故只能用平分一线。其比例规解之本法,惜仅见其弟中履但称中通得旧法於豫章。而不知其法何如,竟未获与中通深论。又称见嘉兴陈荩谟《尺算用法》一卷,亦只平分一线,岂中通所据之法,与荩谟同出一源欤?盖不可考矣。
△《勾股引蒙》五卷(浙江巡抚采进本)国朝陈訏撰。訏字言扬,海宁人。由贡生官淳安县教论。是书成於康熙六十一年壬寅。首载加减乘除之法,杂引诸书。如加法则从《同文算指》,列位自左而右。
左旋